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Introduction

Asthma is one of the most common chronic inflammatory 
diseases of the airways occurring in both children and 
adults, and it involves multiple inflammatory cells and 
inflammatory mediators. Airway hyperresponsiveness (AHR) 
is one of the primary features of asthma. Many factors, 
such as chemical factors, infection factors, and intrauterine 

and infant exposure, affect the body’s susceptibility to 
asthma. With the acceleration of industrial development 
and urbanization, the role of environmental factors in the 
pathogenesis of asthma has attracted increasing attention 
(1-3). Perfluorooctanoic acid (PFOA) is a typical perfluoro 
compound. Because of its high chemical stability, thermal 
stability, and strong hydrophobic and oleophobic properties, 
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it is widely applied in various fields of production and 
people’s lives (4). PFOA is not easily degraded, and its 
half-life in the human body is 3.8 years (5). PFOA exerts 
various biological toxic effects on the liver, immune system, 
reproductive system, endocrine system, etc. (6), which is 
extremely harmful to animals and humans. An exposure 
study reported a statistically significant higher prevalence 
of asthma following prolonged exposure to PFOA in 
drinking water (7). Recently, researchers have detected 
PFOA in the atmosphere of Shenzhen, China and Madrid, 
Spain (8,9). Perfluorinated compounds (PFCs), such as 
PFOA and perfluorooctanesulfonic acid (PFOS), have been 
detected in indoor dust (10), and volatile precursors were 
also detected in the room air (11-13). PFOA adsorbed 
on the surface of air and dust is the major route of PFOA 
exposure in humans. PFOA was positively correlated with 
asthma severity scores among patients with asthma (14,15). 
Ryu and colleagues have clarified that the ingestion of a 
low dose of PFOA does not alter the severity of airway 
hyperresponsiveness (AHR) in OVA-induced mice. 
Nevertheless, other researchers have determined that serum 
PFOA levels are associated with impaired lung function 
among children with asthma (16), but the routes of PFOA 
exposure remain unclear. Since respiratory tract exposure 
has been a critical pathway involved in the pathogenesis 
of asthma, the effects of direct airway exposure to PFOA 
on AHR and airway inflammation in patients with asthma 
require further investigation. 

Currently, inhaled glucocorticoids are the first-line 
treatment for asthma, and their anti-inflammatory effects 
are related to the structure and density of glucocorticoid 
receptors (GR). Elevated levels of glucocorticoid receptor 
are considered to exert anti-inflammatory and protective 
effects. Patients with severe asthma show reduced 
expression of GR (17). In contrast, patients with asthma 
might present resistance to corticosteroid treatment 
because of a reduction in GR signaling, as a decrease in 
the number of GR proteins or changes in the affinity of 
the glucocorticoid-binding GR may reduce the reactivity 
of glucocorticoids (18). Based on this evidence, GR plays very 
important roles in the pathogenesis and treatment of asthma. 
On the other hand, 11β-hydroxysteroid dehydrogenase 
(11β-HSD) type 1 catalyze the regeneration of active 
glucocorticoids (19), which increase the expression of GR. 
In our previous study, we have determined that PFOA is the 
inhibitor of 11β-HSD1 (20). Consequently, we supposed 
that PFOA may cause a reduction in GR expression. 
However, the role of PFOA exposure as a causative factor 

of asthma and whether it will aggravate the reduction in 
GR expression in patients with asthma remain unclear and 
require further exploration.

Therefore, this study aimed to assess the effects of airway 
exposure to PFOA on AHR and GR expression in a mouse 
model of asthma. 

We present the following article in accordance with the 
ARRIVE reporting checklist (available at http://dx.doi.
org/10.21037/tp-20-246).

Methods

Animals and treatments

Thirty BALB/c mice (four to six weeks old, male) were 
randomly divided into five groups, including the sham, 
OVA, OVA+10 pg PFOA, OVA+50 pg PFOA, and 
OVA+100 pg PFOA groups. The OVA-induced asthma 
model was constructed as described in our previous study  
(21-23). Mice were sensitized by intraperitoneally 
administration of 0.01% OVA (10 μg OVA and 20 mg Al 
(OH)3 gel dissolved in 0.1 mL NS) on days 1 and 13. From 
day 25, they were challenged with 1% OVA (10 mg/mL) 
aerosol for 30 min daily for 7 consecutive days. Sham group 
were sensitized and challenged with NS. Animal experiments 
were performed under a project license (Ethical code: 
wydw2016-0151) granted by Wenzhou Medical University 
Institutional Animal Care Committee, in compliance 
with the Association for Assessment and Accreditation of 
Laboratory Animal Care (AAALAC) guidelines for the care 
and use of animals. Mice were purchased from the SLAC 
Company (Shanghai, China) and housed under a specific 
pathogen-free (SPF) conditions with a constant temperature 
(22±1 ℃), suitable humidity (50%±1%) and a 12 h light/
dark cycle. PFOA (Sigma, United States) was dissolved 
in phosphate-buffered saline (PBS). PFOA (10, 50, and  
100 pg) was administered intratracheally after each OVA 
(Sigma, United States) challenge. The concentration of 
PFCs in the atmosphere averaged 15 pg/m3, of which 
PFOA accounts for 35% (about 5.4 pg/m3) (9). The mice 
weight are calculated according to 30 g, the tidal volume of 
0.15 mL, and the respiratory rate of 200 times per minute. 
Therefore, the doses of PFOA we used in this study 
are equivalent to inhaling PFOA from exposure to the 
atmosphere for about 10, 30 and 60 weeks, respectively. 
The volume of PBS used for each concentration of PFOA 
was 40 μL. Control animals received intranasal PBS 
(vehicle).
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Lung function analysis

Mice were anesthetized with an intraperitoneal injection 
of 1% pentobarbital sodium (50 mg/kg) within 24 hours 
after the last challenge. A tracheotomy was performed 
and baseline airway resistance (Rn) was evaluated using a 
forced oscillation system (FlexiVent, SCIREQ Scientific 
Respiratory Equipment Inc. ,  Montreal ,  Canada) . 
Afterwards, increasing doses of methacholine (MCh) were 
administered and the corresponding Rn was measured as 
previously described (21,24). 

Histopathological examination and transmission electron 
microscopy

The lower segment of the right lung was fixed with 2.5% 
glutaraldehyde by immersion for transmission electron 
microscopy. Meanwhile, the middle section (4 µm) of the 
right lung was fixed with formalin and embedded in paraffin 
for the histopathological examination. The total score of 
airway inflammation was assessed as described in a previous 
study (25).

Enzyme-linked immunosorbent assay (ELISA)

Serum IL-4, OVA-IgE and IFN-γ concentrations were 
measured using a mouse/rat quantitative ELISA Kit (Boyun, 
Shanghai, China).

Immunohistochemistry

The lung tissues were fixed, sectioned, stained with 
hematoxylin (Thermo Shandon, PA, USA), and subjected to 
immunohistochemical staining with glucocorticoid receptor 
(GR) antibodies (Santa Cruz Biotechnology, USA). For 
quantitation, the optical densities of the GR protein were 
analyzed using Image-Pro Plus 6.0 software.

Quantitative real-time reverse transcription polymerase 
chain reaction (qRT-PCR)

Total RNA was isolated from lung tissues using TRIzol 

reagent (Invitrogen, USA). The PrimeScript RT reagent 
kit (Takara Bio Inc., USA) was used to synthesize first-
strand cDNAs. Thereafter, qRT-PCR was performed using 
Roche Lightcycler 480 SYBR Green (Roche, Switzerland). 
The relative levels of specific mRNAs were normalized 
to the expression of the Glyceraldehyde-3-phosphate 
dehydrogenase (GAPDH) mRNA using the ∆∆Ct method. 
All primers are listed in Table 1.

Statistical analysis

All data are expressed as mean values ± standard deviation 
(SD) and were statistically analyzed using one-way ANOVA. 
P<0.05 was considered to indicate statistical significance. 
The experiments were performed in triplicate.

Results 

PFOA exacerbates the airway hyperresponsiveness (AHR) 
of asthmatic mice

OVA, OVA+10 pg PFOA and OVA+50 pg PFOA groups 
showed higher values of baseline Rn and MCh-induced 
AHR than the sham group (P<0.01). Nevertheless, baseline 
Rn and MCh AHR values were significantly increased when 
the dose of PFOA increased to 100 pg compared with the 
OVA group (P<0.01) (Table 2 and Figure 1).

Airway exposure to PFOA aggravates the airway 
inflammation and destroys the ultrastructure of the lung 
tissue in OVA-induced mice 

As indicated in Figure 2, the OVA, OVA+10 pg PFOA 
and OVA+50 pg PFOA groups exhibited more severe 
trachea and perivascular cellular infiltration than the 
sham group. Significant differences were not observed 
among the OVA, OVA+10 pg PFOA and OVA+50 pg 
PFOA groups. However, the OVA+100 pg PFOA group 
showed obviously increased inflammation and thickening 
of the airway wall compared with mice in the OVA group 
(P<0.01). Additionally, electron microscopy of lung tissue 
showed vacuolated and loose lamellar bodies, disordered 

Table 1 Primer sequence for reverse transcription quantitative real-time polymerase chain reaction (qRT-PCR)

Gene Forward primer (5’-3’) Reverse primer (5’-3’)

GR TTCCCCATCACTTTTGTTTCG GGTTTCTGCGTCTTCACCCTC

GAPDH TGGCCTTCCGTGTTCCTAC GAGTTGCTGTTGAAGTCGCA
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cilia and swollen mitochondria in the OVA, OVA+10 pg 
PFOA, OVA+50 pg PFOA and OVA+100 pg PFOA groups 
compared with the sham group. Furthermore, PFOA was 
engulfed by macrophages the in OVA+100 pg PFOA group 
(Figure 3).

Effects of airway exposure to PFOA on serum levels of IL-
4, OVA-IgE and IFN-γ in OVA-induced mice

As indicated in Figure 4, the serum levels of IL-4 and 
OVA-IgE were markedly increased in the OVA (IL-

4, 24.39±3.43 pg/mL; OVA-IgE, 40.22±6.52 U/mL), 
OVA+10 pg PFOA (IL-4, 24.67±4.62 pg/mL; OVA-IgE, 
40.11±4.92 U/mL) and OVA+50 pg PFOA groups (IL-
4, 22.32±8.27 pg/mL; OVA-IgE, 41.20±5.29 U/mL, P<0.01) 
compared with the sham group (IL-4, 15.74±0.53 pg/mL; 
OVA-IgE, 8.05±1.48 U/mL). However, higher serum IL-4 
and OVA-IgE levels were observed in the OVA+100 pg PFOA 
group (IL-4, 29.70±5.02 pg/mL; OVA-IgE, 58.42±4.94 U/mL) 
compared with the OVA group (P<0.01). In contrast, the OVA 
(23.52±3.40 pg/mL), OVA+10 pg PFOA (23.59±3.29 pg/mL) 
and OVA+50 pg PFOA groups (20.66±2.25 pg/mL) exhibited 
significantly reduced serum IFN-γ levels compared with the 
sham group (36.64±5.96 pg/mL, P<0.01). However, lower 
serum IFN-γ levels were observed in the OVA+100 pg PFOA 
group (18.15±0.68 pg/mL) than in the OVA group (P<0.01).

Airway exposure to PFOA reduces the levels of the GR 
protein in the lungs of asthmatic mice

We employed immunohistochemistry and western blotting 
to examine the levels of the GR protein in mice after OVA 
and PFOA exposure. The results of immunohistochemical 
staining showed significantly decreased levels of the 
GR protein in lung tissue samples from the OVA 
(0.1564±0.0228), OVA+10 pg PFOA (0.1598±0.0154), 
OVA+50 pg PFOA (0.1501±0.0068) and OVA+100 pg 
PFOA (0.1112±0.0118) groups compared with the tissue 
samples from the sham group (0.2513±0.0234, P<0.01). 
Interestingly, a significant reduction of the GR protein level 
in lung tissue specimens were observed in the OVA+100 
pg PFOA group compared with the OVA group (P<0.01) 
(Figure 5).

Inhibitory effects of airway exposure to PFOA on the level 
of the GR mRNA in the lungs of asthmatic mice

The level of the GR mRNA was examined after various 
treatments. Interestingly, the expression of the GR mRNA 
was markedly reduced in the OVA (0.17±0.02), OVA+10 
pg PFOA (0.13±0.06), OVA+50 pg PFOA (0.09±0.04) and 
OVA+100 pg PFOA (0.04±0.01) groups compared with the 
sham group (1.03±0.16; all P<0.01). However, these values 
were lower in the OVA+100 pg PFOA group than in the 
OVA group (P<0.01) (Figure 6).

Discussion

In the present study, we examined the effect of airway 

Table 2 Perfluorooctanoate (PFOA) increased the baseline airway 
resistance (Rn) of asthmatic mice

Group n Rn (cmH2O/mL/s)

Sham 6 0.3753±0.0371

Ovalbumin (OVA) 6 0.5787±0.0206*

OVA+10 pg PFOA 6 0.5992±0.0182*

OVA+50 pg PFOA 6 0.6146±0.0415*

OVA+100 pg PFOA 6 0.8582±0.1087#

Mice were exposed to aerosolized saline using a Mouse 
ventilator with the forced oscillation technique, and Baseline 
Rn was then detected. Data are mean ± standard deviation 
(SD) (n=6). *P<0.01 compared with the sham group; #P<0.01 
compared with the OVA group.

Figure 1 Perfluorooctanoate (PFOA) exacerbates airway 
hyperresponsiveness (AHR) in ovalbumin (OVA)-induced mice. 
After administered with increasing doses of methacholine (MCh) 
(3.125, 6.25, 12.5, 25, and 50 mg/mL), the corresponding airway 
resistance (Rn) of each mice was measured, and the percentages 
relative to the baseline Rn are shown. Data are presented as means 
± standard deviation (SD) (n=6). *P<0.01 compared with the sham 
group; #P<0.05 compared with the OVA group.
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Figure 2 Airway exposure to perfluorooctanoate (PFOA) aggravates the airway inflammation in ovalbumin (OVA)-induced mice.  
(A) Representative photographs of HE staining (lung tissue, ×200 magnification). (B) Scores of airway inflammation. Data are expressed as 
means ± standard deviation (SD) (n=6). *P<0.01 compared with the sham group; #P<0.01 compared with the OVA group.

Figure 3 Perfluorooctanoate (PFOA) destroys the ultrastructure of the lung tissue in asthmatic mice. (A) Cilia of a normal cell (black arrow), 
(B) compact lamellar body (black arrow), (C) loose lamellar body (black arrow), (D) disorder cilia (black arrow), (E) loose lamellar body (black 
arrow) and swollen organelle (white arrow), and (F) PFOA engulfed by macrophages (black arrow).
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exposure to PFOA on AHR and GR expression in asthmatic 
mice. Intratracheal PFOA administration exacerbated the 
airway hyperresponsiveness of OVA-induced asthmatic 
mice. Moreover, PFOA significantly increased the IL-4 and 
OVA-IgE levels and reduced the IFN-γ level in the serum, 
aggravating airway inflammation in OVA-induced asthmatic 
mice. Interestingly, airway exposure to PFOA did cause a 
further decrease in the expression of the GR mRNA and 
protein in asthmatic mice.

Numerous studies have determined the relationship 
between PFOA and asthma. According to one study, 
exposure to ingested PFOA resulted in increased Rn and 
MCh AHR values in a non-OVA-induced mouse model; 

however, exposure to ingested PFOA did not alter the 
severity of AHR in an OVA-induced mouse model (26). 
Another study reported an association between serum 
PFOA levels and impaired lung function in children with 
asthma (16). Nevertheless, Fairley (27) showed that dermal 
exposure to PFOA exacerbates AHR in OVA-induced mice 
and increases the responsivity of the airway to OVA and 
other allergens. Based on this evidence, different routes 
of PFOA exposure may exert different effects on AHR 
in individuals with asthma. Airway exposure is a crucial 
contributor to the onset of asthma; however, the effect of 
airway exposure to PFOA on AHR in patients with asthma 
has not been elucidated. Interestingly, in our study, baseline 

Figure 4 Effects of airway exposure to perfluorooctanoate (PFOA) on serum IL-4, ovalbumin (OVA)-IgE, and interferon (IFN)-γ levels in 
OVA-induced mice. Serum levels of IL-4, OVA-IgE, and IFN-γ were determined using Enzyme-linked immunosorbent assay (ELISA). Data 
are expressed as means ± standard deviation (SD) (n=6). *P<0.01 compared with the sham group; #P<0.01 compared with the OVA group.

Figure 5 Effects of airway exposure to perfluorooctanoate (PFOA) on levels of the glucocorticoid receptor (GR) protein in the mice lung. 
(A) Levels of the GR protein were determined using immunohistochemistry. (B) Semiquantitative analysis of levels of the GR protein using 
Image-Pro Plus software. Data are presented as means ± standard deviation (SD) (n=6). *P<0.01 compared with the sham group; #P<0.01 
compared with the OVA group.
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Rn and MCh AHR values were significantly increased after 
7 days of intratracheal administration of a high dose of 
PFOA. Our study is the first to show that airway exposure 
to PFOA is a risk factor for more severe AHR in an animal 
model of OVA-induced asthma.

Airway inflammation is one of the primary causes of 
AHR. T helper type 2 (Th2) cells play a vital role in the 
airway inflammation associated with asthma (28). IL-4 is 
a hallmark cytokine of Th2 cells, which is involved in IgE 
production, AHR and airway eosinophilia. Meanwhile, 
IFN-γ, which is derived from Th1 cells, promotes the 
differentiation of Th0 cells to Th1 cells and inhibits the 
function of Th2 cells. As shown in the study by Dong (29), 
PFC exposure is associated with an obvious imbalance in 
Th1/Th2 cytokines, with amplified Th2 and weakened Th1 
responses, leading to the aggravation of the Th2-mediated 
inflammatory response. According to Fairley (27), dermal 
exposure to PFOA increases serum IgE levels and causes 
an exaggerated response to ovalbumin. Prenatal exposure 
to PFOA and PFOS is associated with higher cord blood 
levels of IgE (30). Higher serum PFOA levels are associated 
with higher levels of total IgE in children (31). Based on 
this evidence, we investigated whether airway exposure to 
PFOA would enhance the Th2 response in OVA-induced 
asthmatic mice. As shown above, elevated IL-4 and OVA-
IgE and decreased IFN-γ levels were detected in mice in 

the OVA group. Interestingly, mice in the OVA+100 pg 
PFOA group (which displayed a more severe AHR than 
the OVA group) showed higher serum IL-4 and OVA-IgE 
levels and lower serum IFN-γ levels than mice in the OVA 
group. A pathological examination and electron microscopy 
of lung tissues also showed increased inflammation, airway 
wall thickening and the destruction of cellular structures. 
Thus, airway exposure to PFOA may intensify the Th2 
response to allergens in individuals with asthma in a dose-
dependent manner. However, Ryu (26) found that chronic 
gastrointestinal exposure to PFOA increases IFN-γ levels 
in the alveolar lavage fluid of embryonic and neonatal 
mice, suggesting that PFOA may also be implicated in 
Th1-mediated immune responses. This discrepancy may 
be related to the use of different PFOA exposure routes 
and the duration of exposure. The potential molecular 
mechanism requires further clarification. 

The ant i - inf lammatory  e f fects  of  endogenous 
glucocorticoids are associated with the structure and 
density of GR. The mechanisms underlying the anti-
inflammatory effects of GR include interactions with 
glucocorticoid response elements, such as SLPI MKP-
1 and GILZ, to promote the transcription of anti-
inflammatory genes (32), interactions with CBP to inhibit 
the transcriptional activity of transcription factors such 
as NF-κB (33), and an increase in the expression of TTP 
to inhibit the expression of inflammatory factors, such 
as TNF-α (34). Increased expression of glucocorticoid 
receptor is considered to exert protective effects. Patients 
with asthma often present a decrease in the expression of 
GR (17). Exercise might increase GR expression and the 
levels of anti-inflammatory cytokines in a model of OVA-
induced asthma (35). IL-4 inhibits the transfer of GR 
from peripheral monocytes into the nucleus (36), leading 
to enhanced Th2 type immune responses in individuals 
with asthma. GR is expressed in almost all cells, but it is 
present as different isoforms (37). Nevertheless, researchers 
have not yet determined whether PFOA aggravates the 
decrease in GR expression in patients with asthma. Based 
on accumulating evidence, patients with asthma present 
resistance to corticosteroid treatment that may be attributed 
to a reduction in GR expression in the airways (18). In our 
study, decreased expressions of the GR mRNA and protein 
was observed in OVA-induced mice; however, there was a 
further decrease in the expressions of the GR mRNA and 
protein level after airway exposure to PFOA. Therefore, 
airway exposure to PFOA may precipitate steroid resistance 
in patients with asthma. However, this hypothesis should be 

Figure 6 Effects of airway exposure to perfluorooctanoate (PFOA) 
on the expression of the glucocorticoid receptor (GR) mRNA in 
the lung. The level of the GR mRNA in the lung was determined 
using quantitative real-time reverse transcription polymerase chain 
reaction (qRT-PCR). Data are presented as means ± standard 
deviation (SD) (n=6). *P<0.01 compared with the sham group; 
#P<0.01 compared with the OVA group.
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further confirmed in future studies.
Overall, airway exposure to PFOA exacerbates airway 

hyperresponsiveness, enhances Th2-type immune response 
and downregulates GR expression in asthmatic mice. 
Although the current evidence does not suggest substantial 
accumulation and toxicity of PFCs (38), PFOA in the 
atmosphere could migrate from a long distance, which is a 
great hazard. PFCs have a wide global distribution, and the 
effect of PFOA in the atmosphere on respiratory diseases 
such as asthma has attracted increasing attention and 
deserves further exploration.
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