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Introduction

Pediatric leukemia is the most common type of cancer 
in children. Around 95% cases of pediatric leukemia are 
acute. Acute leukemia comprises a heterogeneous group 
of malignant diseases characterized by clonal expansion 
of immature hematopoietic precursor cells. Two major 
categories of acute leukemia are recognized: (I) acute 
lymphoblastic leukemia (ALL) subdivided into B- and T-cell 
precursor ALL and (II) acute myeloid leukemia (AML) 
characterized by an overproduction of immature myeloblasts 
or leukemic blasts (1). ALL covers approximately three out 
of every four cases of childhood leukemia while AML is the 
next most common type.

In pediatric patients with acute leukemia, diagnosis and 
treatment decisions are based on the status of peripheral 
blood and bone marrow cellularity. Historically, identification 
of leukemic cells among normal bone marrow cells has relied 

on their morphology. However, the reliability of morphologic 
examination of peripheral blood and bone marrow largely 
depends on the hematologist’s expertise, and its sensitivity 
is fundamentally limited by the similarities in appearance 
between leukemic cells and normal lympho-hematopoietic 
progenitors affecting the effective treatment plan making. 

Due to the limitation of morphologic assessment, 
immunophenotyping diagnostic cells and their potential 
normal counterparts using flow cytometry originated in 
the late 1980s. Immunophenotyping is a technology used 
to study antigens expressed on cell surfaces to determine 
cell type and stage of differentiation. This technique is 
commonly used in basic research. Diagnosis of leukemia 
involves the labeling of white blood cells from blood, bone 
marrow or spinal fluid with antibodies directed against 
surface proteins. By choosing appropriate antibodies, the 
definition of leukemic cells can be accurately determined. 
The labeled cells are processed in a flow cytometer, a laser-
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based instrument capable of analysing thousands of cells per 
second. The whole procedure can be performed in a matter 
of a couple of hours. 

Immunophenotypic similarities between the tested cells 
and their potential normal counterparts allow the assignment 
of such cells to a given hematopoietic cell lineage and 
maturational stage, as well as the identification of aberrant 
phenotypes, such as leukemia-associated immunophenotypes, 
which can be reliably recognized by flow cytometry. In fact, 
for more than two decades, immunophenotyping has been 
providing key information for the diagnosis, classification 
and monitoring of leukemia and allowing their detection of 
very small numbers, whose recognition may be impossible by 
morphologic examination (1-9).

Measuring response to chemotherapy is the backbone 
of the clinical management of pediatric patients with 
acute leukemia. The concept that patients with leukemia 
in morphologic remission could have measurable levels of 
minimal residual disease (MRD) was first demonstrated in 
the early 1980s (10). Similar to immunophenotyping, flow 
cytometric MRD analysis relies on the detection of surface 
phenotypes unique to leukemia cells, but not present on 
normal hematopoietic cells. The sensitivity can be routinely 
achieved to the detection of 0.01% (11). The levels of MRD 
are now widely used as parameters for therapy efficacy and 
risk assignment in ALL, and increasingly so in AML (11-13). 

The detection of chromosomal abnormalities has 
important diagnostic and prognostic significance in acute 
leukemia. Apart from karyotyping of cytogenetic analysis, 
flow cytometric measurement of DNA index (DI) has been 
shown to play an important role in the characterization of 
the leukemic clones and has been used as a prognostic factor 
in childhood ALL (14,15). 

Immunophenotyping using flow cytometry in 
acute childhood leukemia

Leukemia cells can be recognized by virtue of unique cell 
markers visualized with monoclonal antibodies and flow 
cytometry. Together with cytomorphology and cytochemistry, 
immunophenotyping by flow cytometry is crucial for the 
detection and lineage assignment of blast cells in diagnostic 
samples, including the definition of acute leukemia of ambiguous 
lineage (16,17). Comparison of the immunophenotypic features 
of blasts cells versus normal hematopoietic precursors and 
immature cells contributes to the definition of the stage of 
maturation arrest of the blast population within the B- and 
T-lymphoid lineages as well as the neutrophilic, monocytic, 

megakaryocytic or erythroid lineages.
Such immunophenotyping requires careful selection of 

unique combinations of individual markers, based on their 
degree of specificity for the identification of a given cell 
lineage, maturation stage and aberrant phenotype, as well as 
the selection of appropriate antibody clones and fluorochrome 
conjugates to be used in multicolor combinations. The 
performance of these marker combinations is even more 
relevant than that of the individual markers. Consequently, 
such careful selection of reagents is essential for the design of 
standardized multicolor antibody combinations that provide 
unique staining patterns for each normal, or aberrant, cell 
population in a given sample (18-20).

Although immunophenotying by flow cytometry has 
become standard practice in the evaluation and monitoring 
of patients with acute leukemia, considerable variability 
continues to exist in reagents used for evaluation and the 
format in which results are reported. Several committees 
have attempted to define consensus sets of reagents suitable 
for general use in the diagnosis and monitoring of acute 
leukemia. In 2007, the Bethesda International Consensus 
first successfully defined a set of consensus reagents 
suitable for the initial and secondary evaluation of each 
cell lineage of leukemia cells (20). In 2012, the EuroFlow 
group published a set of 8-color antibody panels for the 
diagnosis and classification of acute leukemias. The panels 
are designed in a flexible way to fit the needs of distinct 
diagnostic laboratories and they can be applied in one or 
multiple sequential steps. Depending on the precise clinical 
question associated with a sample suspected of containing 
blast cells, the first step includes a single 8-color tube, the 
acute leukemia orientation tube (ALOT), complemented by 
a multi-tube panel designed for full characterization of the 
malignancy. The choice of the second panel depends on the 
results obtained with the ALOT, that is, the antibody panel 
for confirmation and classification of B-ALL, T-ALL, or the 
antibody panel for non-lymphoid acute leukemia, the so-
called AML/myelodysplastic syndrome panel. Rare cases of 
ambiguous lineage leukemias identified with the ALOT then 
require the use of more than one complementary panel (19). 
This flexible 8-color antibody panel for multidimensional 
identification and characterization of normal and aberrant 
cells are optimally suited for immunophenotypic screening 
and classification of hematological malignancies (19). 
Together with standardization of flow cytometer instrument 
settings and immunophenotying protocols (18), the 
EuroFlow antibody panels can be considered as the 
standard approach for standardized multidimensional flow 
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cytometric immunophenotyping for diagnostic screening 
and classification of hematological malignancies (19).

MRD identification using flow cytometry in acute 
pediatric leukemia

The prognostic significance of MRD in pediatric ALL was 
demonstrated in many studies involving newly diagnosed 
patients, patients with first-relapse ALL, and those undergoing 
hematopoietic stem cell transplant (21-31). Evidence has also 
accumulated in AML, with several studies reported of the 
significant association between MRD and relapse (32-34).

The introduction of methods for MRD detection has 
revolutionized monitoring of treatment response in acute 
leukemia. These methods can not only recognize leukemic 
cells by objective criteria, thus potentially improving the 
reliability of blood and marrow examination, but they 
also allow the detection of leukemic cells well beyond the 
resolution of microscopic examination.

Traditional morphologic assessment has limitation in 
sensitivity in MRD detection. Bone marrow samples collected 
after a temporary stop in chemotherapy, after the end of 
treatment, or after hematopoietic stem cell transplantation, 
may contain a high proportion of recovering immature 
lymphoid cells whose morphology resembles that of ALL 
lymphoblasts (35). Therefore, morphologic assessment 
of these samples is difficult and may result in erroneous 
conclusions. The application of flow cytometric MRD assays 
can clarify the identity of the morphologically ambiguous 
cells, where these cannot be detected by morphology or other 
techniques. In a study performed with 248 bone marrow 
samples collected after two weeks of remission induction 
therapy from children with newly diagnosed ALL, result 
showed only 12.9% had leukemic lymphoblasts identifiable 
by morphologic analysis and all of these had at least 0.01% 
cells expressing leukemia-specific immunophenotypes (24). 
In two samples with 9% and 16% leukemic cells by flow 
cytometry, in contrast, the morphologic analysis revealed 
only apparently mature normal lymphocytes (24). Therefore, 
patients in complete morphologic remission may still have a 
large number of residual leukemic cells.

In the last decade, the detection of MRD by flow cytometric 
or molecular techniques has come to be recognized as one 
of the most important clinical measures and is now routinely 
evaluated in experimental clinical treatment protocols. A 
study of 129 samples with MRD ≥0.01% showed an excellent 
correlation between the results of the two methods (36). Kerst 
et al. analysed 105 samples from 30 patients with ALL and 

also found highly concordant results for these two methods (37). 
Irving et al. studied MRD from 134 patients enrolled in the 
UKALL 2003 trial on day 28 (end of remission induction) 
and week 11 (completion of consolidation). Overall, 115 
samples including 90 MRD ＜0.01% and 25 MRD ≥0.01% 
were measured by both methods. Most of the 19 discordant 
samples were around the threshold level and MRD was 
detectable by both techniques (38). With the improvement in 
methodologies, the concordance between MRD assays should 
improve. In patients with ALL, flow cytometry and PCR 
amplification of antigen-receptor genes provide similar results, 
if MRD is present at the levels of 0.01% or above, and hence 
the choice between these two methods is primarily dictated 
by the facilities and expertise available. In comparison with 
molecular techniques, the flow cytometric detection of MRD 
has the advantage of general applicability, high speed and 
lower cost, and hence has been the preferred method used for 
MRD detection by many laboratories. However, the sensitive 
flow cytometric detection of MRD requires evaluation of a 
suitably large number of cells, roughly 1,000,000 cells in order 
to achieve a sensitivity of 0.01% of white cells. In the St Jude 
Total XV study, MRD could be monitored by flow cytometry 
with sensitivity of 0.01% in 482 of 492 patients (98%) (39).

The targets most frequently used to monitor MRD 
in AML are transcripts originating from gene fusions, 
mutations, or overexpression, and leukemia-associated 
immunophenotypes (13,40). Flow cytometry is the only 
method that can be applied to monitor MRD in the 
majority of patients with AML. Studies on MRD by PCR 
amplification of fusion transcripts can only be used in a 
fraction of children with AML and results are difficult to 
interpret (41). More importantly, MRD measured by flow 
cytometry was a significant predictor of relapse, regardless of 
the morphologic results (41), could be performed reliably and 
was strongly correlated with clinical outcome (22,39). 

Interestingly, specific immunophenotypic profiles have 
been associated with prognosis and/or unique cytogenetic 
and molecular abnormalities (42-45). Expression profiling 
found the gene for CD44 to be one of the best, correlating 
with the MLL genotype and with the subgroup of T-ALL 
patients, who later developed hematological relapse (45). In 
addition, dual CD27posCD44pos blasts are typically seen in 
BCR/ABLpos ALL and a subset of TEL/AML1pos patients 
exists with CD44posCD27pos blasts (45). In 74 cases with 
B-ALL children, including 21 cases with chromosomal 
translocations, t(12;21)pos and 53 cases with chromosomal 
translocation, t(12;21)neg. The t(12;21)pos ALLs displayed a 
higher intensity of CD10 and HLADR expression together 



152 Wang. Flow cytometry in acute pediatric leukemia

© Translational Pediatrics. All rights reserved. Transl Pediatr 2014;3(2):149-155www.thetp.org

with lower levels of the CD20, CD45, CD135 and CD34 
antigens as compared to the t(12;21)neg cases (42). This 
immunophenotypic approach used for the identification of 
t(12;21)pos cases can be achieved with a sensitivity of 86% and 
a specificity of 100% (42). Moreover, a study with 82 B-ALL 
cases showed that BCR/ABLpos B-ALL cases constantly 
displayed a homogeneous expression of CD10 and CD34, 
but low and relatively heterogeneous CD38 expression, 
together with an aberrant reactivity for CD13 (43). 

Flow cytometric immunophenotyping has proven to 
be of great utility for sensitive detection of low levels 
of residual blast cells and their distinction from normal 
regenerating immature cells in the bone marrow of acute 
leukemia patients during treatment (46). Flow cytometry is 
capable of detecting a single leukemia cell among 10,000 or 
more normal cells in peripheral blood during treatment for 
newly diagnosed T-lineage ALL in children (47). However, 
it is critical that flow cytometric analysis of MRD relies on 
markers that truly distinguish ALL cells from normal cells, 
including lymphoid progenitors; otherwise, the risk of false-
positive MRD results is high. Therefore, a combination of 
flow sorting of small immunophenotypically defined cell 
populations with subsequent analyses of leukemia associated 
cytogenetic and molecular markers may provide a more 
sophisticated method for detecting low MRD levels. 

DI measurement in childhood ALL

Among age two to ten years old acute leukemia patients, 
hyperdiploid leukemia is recognized as an independent 
indicator of good treatment outcome (14). There is a 
covariation between modal chromosome number and 
traditional clinical risk factors, that is, the group with >51 
chromosomes is associated with favorable clinical features, 
but the hypodiploid group forming 1-3% of the cases has 
no distinct clinical features (48). Therefore, when stratifying 
patients into future treatment protocols it will be important 
to reliably decide ploidy of the leukemic cells at diagnosis. 

There are two major conventional techniques to 
investigate the ploidy of leukemic blasts. The first traditional 
way is the karyotyping of cultured bone marrow cells with 
light microscopy counting of Giemsa-banded metaphase 
chromosomes (49). However, the low number of metaphases 
studied required, making this technique insensitive, it also 
depends on a successful cell culture. The second way is the 
DNA content measurement by image analysis or by flow 
cytometry (50,51). The DNA content of cells is measured by 
the ability of propidium iodide to bind stoichiometrically to 

DNA under appropriate staining conditions. The nuclei of 
these stained cells are evaluated individually for DNA content 
by flow cytometry. The results are displayed graphically as a 
histogram, in which the fluorescence emitted by each nucleus 
is directly proportional to its DNA content. The difference 
in DNA content can be expressed as the ratio of leukemia 
sample/standard DNA fluorescence, defined as the DI. 

The highly significant correlation between modal 
chromosome number by karyotyping and DI by flow 
cytometry was shown in a study on 112 childhood ALL 
patients on fresh or frozen samples (15) and a study of 82 
consecutive children with ALL (14). DI was also repeatedly 
found to be more sensitive than karyotyping in discovering 
small aneuploidy clones (14,15). In 7 of 19 childhood ALL 
cases, DI detected an aneuploid leukemic clone at day 15, 
and at day 29, whereas the karyotype in all these follow-
up samples were diploid (14). Additionally, two patients 
were shown by karyotyping to have undetected biclonality 
at diagnosis and, in >20% of the aneuploid patients, the 
abnormal clone was revealed by DI during the first month 
of induction therapy, but showed a diploid karyotype (14). 
Furthermore, the cytogenetic approach only detected the 
hyperploid clone in three patients who presented the near-
triploid/hyperploid entity, whereas the DI identified a 
minor population of hypodiploid cells besides the major 
hyperdiploid clone, thereby validating the diagnosis 
of severe hypodiploidy (15). However, the capacity to 
detect small DNA content abnormalities is dependent 
on the quality of the sample, the staining technique and 
the instrument used. In contrast, traditional karyotyping 
identifies smaller structural and numerical DNA changes. 

DI is a prognostic factor in childhood ALL. A group of 
investigators have provided arguments that justify the use 
of DI measurement for evaluating the prognosis (52,53). A 
statistically significant difference in survival was found using 
the DI approach, while a difference was not found using 
modal numbers obtained by karyotyping. In childhood 
ALL, a DI of ≥1.16 is associated with hyperdiploidy 
of >50 chromosomes, approximately representing 25-
30% of childhood ALL, has more favorable presenting 
features and higher cure rates than other major prognostic 
subgroups (15). On the other hand, a hypodiploid clone  
(<44 chromosomes) is associated with a poor prognosis (54).

The flow cytometric DI is technically fast on fresh or 
frozen samples. If the karyotype is essential to analyze 
chromosomal abnormalities, DI provides complementary 
information in aneuploid ALL, either by confirming the 
cytogenetic data, or by detecting additional clones not 
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identified when only using cytogenetic data.

Current limitations

Flow cytometry is a rapid, cost effective, informative, sensitive, 
accurate qualification method, which is applicable to a wide 
range of disorders, especially in hematopoietic malignancy. 
The current limitations of flow cytometry include the 
requirement for consistent flow technique, lack of expertise 
in sample processing and subjective data interpretation and 
poor standardization across institutions. Advancing techniques 
will be further improved by standardizing the setting up of 
instruments, staining protocols and data analysis. These 
developments will make flow cytometry even more 
accessible within clinical applications.

Future directions

Flow cytometry has developed rapidly since 1980s and 
become a mainstay of the modern clinical pathology 
laboratory, especially in leukemia diagnosis. Methods to 
study acute leukemia by flow cytometry are constantly being 
refined by the introduction of new markers, which take 
advantage of the capacity of newer instruments to detect 
an increasingly higher number of fluorochromes. New 
technologies, including mass cytometry (55) (spectrometry-
based detection of elements conjugated to antibodies) 
and image cytometry (56) combining features of flow 
cytometry and imaging, can further increase this capability. 
This enhanced capability will facilitate the discrimination 
between normal and leukemic cells, increase the sensitivity 
of leukemia cell detection and will also allow the study of biologic 
features of leukemia cells, such as expression of molecules related 
to proliferation, apoptosis, signaling, and drug resistance. In 
addition, the traditional ways to analyze flow cytometric data 
will be inadequate when applied to the amount of information 
acquired with contemporary instruments and hence a parallel 
development in analytical software must take place.

Along with technology and instrumentation development, 
improved leukemia classification and tailoring of therapy will 
greatly improve patient outcome particularly for children 
with acute leukemia.
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