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Introduction

Human beings suffer very high pregnancy failure rates 
after conception (1-6). Losses prior to biochemical 
pregnancy confirmation, using maternal serum markers, 
such as beta-human chorionic gonadotrophin (ß-hCG) 
and maternal alpha fetoprotein (AFP), are referred to as 
“preclinical” (2,7). It has been suggested that one third 
to one half of zygotes do not mature into blastocysts, 
and of those that form blastocysts, at least 40% will not 
implant (8,9). Opitz [1987] (3) estimated that 45% of all 
conceptions fail. Of these, 80% were pre-clinical losses. 

Clinical diagnosis of a pregnancy by recognition of fetal 

heart movement on ultrasound (7,8,10) can usually be 
achieved by about 6 weeks postmenstrual or approximately 
4 weeks after conception. From the sixth to twelfth week 
period, a further 10-15% of pregnancies fail (8,11-13). 
Maternal age has an effect, with losses ranging from 10% 
for women 20-24 years of age to 51% in those 40-44 (8).

Descriptive terms to delineate different types of 
spontaneous abortion (SA) were introduced by Robinson in 
1975 (13), and have been widely adopted. A blighted ovum 
is defined as a “gestational sac but no fetus on ultrasound”. A 
missed abortion has “a fetal pole or a fetus in the gestational 
sac but no fetal heart movement on ultrasound”. A live abortion 
has “fetal heart movement demonstrated on ultrasound less than 
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a week before the SA”. Recommendations to update these 
terms were proposed in 2005 (7). Technology has provided 
more sophisticated ways to investigate and measure early 
pregnancy, so accurate assessment of early development 
can be quantified. Unification of terminology allows 
direct comparisons across all research and hospital groups. 
Accurate measurement of the number of weeks of gestation 
is critical because there are so many developmental changes 
in the first trimester. “Miscarriage” is suggested as a more 
appropriate term than “abortion”, to differentiate it from 
medical or legal abortion. 

Pregnancies  that  abort  ear ly  show a  range  of 
developmental arrest stages. Some pregnancies may only 
produce a few fetal membranes, others a complete empty 
sac, or an empty sac with a cord stump. Some may have 
evidence of an embryo, ranging from properly formed 
to totally disorganised. There may be fetal development 
with anything from a well-formed fetus without apparent 
abnormality, to those with focal malformation, to severely 
abnormal (4,13-15). Cytogenetic studies of all these stages 
show some correlation of chromosomal abnormality with 
the degree of development of fetal material, although 
a normal karyotype may occur in some cases with very 
abnormal fetal material. The more severely disorganised 
the development, and/or developmental delay in relation to 
estimated fertilization date, the more likely the chance of 
cytogenetic abnormality. Those better formed, more normal 
in appearance, or closer in size to estimated gestational 
dates, tend to be related to cytogenetic alterations more 
compatible with live birth, i.e., trisomies 13, 18, 21 or sex 
chromosome abnormalities (numerical or structural) (15). 
Exceptions may always occur for any cytogenetic alteration, 
making generalisations difficult. For example, Byrne  
et al. [1985] (4) found severe dysmorphism in fetuses with 
trisomy 13, 18 and triploidy.

Some spontaneous losses may be due to underlying 
medical conditions such as endocrine, immunologic or toxic 
abnormalities. In other cases anatomical problems such as 
incompetent cervix, uterine anomalies or serious maternal 
illness are the cause (2,8,11,16,17). 

Repeated miscarriage is the cause of childlessness in 2-5% 
of reproducing couples (8,18,19). Recurrent miscarriage is 
defined as two or more spontaneous losses (1). Recurrence 
risks for patients who have a history of spontaneous fetal 
loss have been studied in relation to various factors, such as 
antiphospholipid antibodies, uterine abnormalities, luteal phase 
defects, diabetes mellitis and thyroid problems (1,8,11). Early 
literature suggested that some individuals had an increased 

risk of recurrent chromosomal aneuploidy (20), but later data 
have not confirmed this (18,21,22). If the cytogenetics is 
normal in repeated pregnancy loss, there is an increased risk 
that the next pregnancy will also fail (18,20,22-24). Maternal 
age is a significant risk factor for repeated miscarriage (21). 
Mothers aged 20-24 exhibited losses in 8.9% of pregnancies 
compared with mothers aged 42 who lose more than half 
their pregnancies, and women 45 or older have a loss risk 
of 74.7% (25). A study by Choi et al. [2014] (26) concluded 
that there was a statistically significant difference in the rate 
of cytogenetic abnormalities between sporadic and recurrent 
miscarriages. Closer examination of the data demonstrated 
that the sporadic loss group included pregnancies up to  
20 weeks. The subset of mothers with sporadic loss of less 
than 10 weeks gestation exhibited an abnormality rate of 
62%, not different from the 64% in the recurrent miscarriage 
population.

Another identified cause of recurrent abortion is parental 
constitutional cytogenetic alterations (8). In these cases, 
the theoretical risk for each pregnancy will be similar. Data 
from one Japanese study demonstrated 5% of couples with 
recurrent SA exhibited cytogenetic alterations (27). Of 
these 639 couples in the study group, 19 carried reciprocal 
translocations and 9 exhibited Robertsonian translocations. 
Of the 94 previous pregnancies for these 28 patients, only 
nine infants were born (27), certainly suggesting a link 
between the cytogenetic alteration and repeated SA.

Sporadic miscarriage affects one in four women (1,28), 
and may occur as a single isolated event. Beginning with 
the studies published by Lauritsen et al. [1972] (29) using 
fluorescent banding techniques and followed by Kajii  
et al. [1973] (30) using Giemsa banding (G-banding), it was 
possible to identify specific chromosomes associated with 
early losses. Other research groups elsewhere in the world 
applied these techniques during the late 1970’s and into 
early 1980’s. Cytogenetic examination revealed underlying 
chromosomal abnormalities in ~50% of fetal samples 
successfully cultured and karyotyped (5,6,31-34). Research 
then focused on comparative studies of cytogenetics against 
other clinical parameters including: 

(I)	 Ultrasound results (10,35-38);
(II)	 Hormonal profiles (2,39);
(III)	 Morphology/histology of the aborted tissue 

(4,14,15,31,40,41);
(IV)	 Comparative genomic hybridisation (CGH) (42-45);
(V)	 Array-based CGH compared with conventional 

cytogenetics and FISH (46);
(VI)	 Combined array CGH and single nucleotide 



191Translational Pediatrics, Vol 4, No 2 April 2015

© Translational Pediatrics. All rights reserved. Transl Pediatr 2015;4(2):189-200www.thetp.org

polymorphism (SNP) detection (47,48);
(VII)	 Flow cytometry and CGH (49,50), or array CGH (51);
(VIII)	 FISH (52-54);
(IX)	 Quantitative polymerase chain reaction (qPCR) 

(55,56), and quantitative fluorescent PCR (QF-
PCR) (57);

(X)	 Uniparental disomy (UPD) (58).
None of these studies was able to replace the information 

provided by the cytogenetics data using the alternative 
technique. Each of these other methods provided additional 
information in certain circumstances but individually none 
were more informative (1). Molecular techniques provide 
results when tissue culture fails, although the quality of 
DNA may also be a limitation. Maternal contamination 
is not isolated to conventional tissue culture, it is also an 
issue in molecular techniques, where maternal material 
cannot always be entirely separated during dissection of 
the sample (1,47). Detection of polyploidy is very difficult 
with CGH unless SNP analysis or flow cytometry is used in 
combination or a triploid has both X and Y chromosomes 
(47 ,51) .  Tetraplo idy  and ba lanced chromosomal 
rearrangements where maternal and paternal genomes are 
equal, cannot be differentiated with SNP microarrays (59).

Conventional cytogenetic studies

The most common cause of first trimester spontaneous loss is 
sporadic chromosomal error. They may be errors of meiosis, 
mitosis, or fertilization. Maternal meiotic errors had long 
been suspected by the relationship between elevated maternal 
age and increased occurrence of such conditions as Down 
syndrome (trisomy 21), Edward syndrome (trisomy 18), 
and Patau syndrome (trisomy 13) (60). Studies on oocytes 
have provided more data on meiotic nondisjunction in the 
female (47,61-65). Although super-ovulation employed in in 
vitro fertilisation (IVF) clinics may lead to additional error 
(62,63,66) it may also telescope the aging process.

Maternal meiotic errors most commonly lead to 
autosomal trisomy. Use of molecular methods has provided 
the opportunity to determine parental origin and stage of 
meiosis in trisomic miscarriages. Maternal meiosis I (MMI) 
contributed towards 68% of trisomy 13 cases (67), 64% to 
77% in trisomy 21 (68,69), and 90% in trisomy 16 (70). 
Maternal error (both first and second meiotic division) 
was demonstrated for 95% of informative cases in trisomy 
18 (71). Maternal meiosis II (MMII) errors contributed 
16% in trisomy 13 (94% maternal error), 21.5% to 22.2% 

in trisomy 21 (85.5% maternal) respectively in the above 
references (67-70). The source of the error could not be 
specifically determined in the remaining 10% of cases in 
the trisomy 16 study and were classed as either MMI or 
MMII (70).

Studies on sperm have demonstrated that paternal 
meiotic errors also occur (72-74), and have the potential to 
cause abnormal fertilisation (75,76).

Mitotic error is likely to result in at least two cell 
lines (mosaicism) in the developing fetus. The degree of 
mosaicism depends on the timing of the error. If the error 
occurs very early in the zygote, the percentages of each 
cell line may be equal. Mitotic error may be either an 
increase in chromosome number from diploid to trisomy 
e.g., 46,XX to 47,XX,+8 (77), or it may be a reduction from 
diploid to monosomy, the most common example being 
46,XX or 46,XY to 45,X. Another type of error is due to 
loss of an additional chromosome (trisomy) to diploidy, 
termed trisomic zygote rescue (TZR). Imprinting defects in 
children caused by uniparental disomy are attributed to this. 
The placental tissue can have a different karyotype from 
the growing embryo (78,79), while the extra-embryonic 
membranes and placenta are partially or completely 
trisomic (80,81). The chromosome involved and the timing 
of the rescue will determine the success or otherwise of 
the pregnancy (82). Structural alterations may also occur 
as a post-zygotic mitotic error. In these cases, there will be 
a normal cell line as well as one carrying the cytogenetic 
alteration, once again creating mosaicism.

Triploidy is a result of incorrect ploidy at fertilisation. 
This occurs when two haploid sets of chromosomes come 
from one parent, and a third set comes from the other. 
It may be diandry (two paternal sets) or digyny (two 
maternal sets) (11). Another source of error and abnormal 
development is where the first chromosomal replication 
occurs, but the first mitotic cell division (cytokinesis) 
does not. This results in a tetraploid nucleus with four 
haploid sets of chromosomes, being two identical sets 
from each parent. It represents homozygosity for both 
parental sets (11). Tetraploidy is generally observed in 
approximately 2% of first trimester miscarriages, although 
in some studies it may be reported at higher incidences, due 
to pooling cases of diploid/ tetraploid mosaicism (57).

The types of cytogenetic alteration are constant across 
all published series. They include: monosomy of X or 21; 
triploidy; tetraploidy; single, double or triple trisomy; 
structural alterations, either balanced or unbalanced; 
combined monosomy/trisomy; all present in larger 
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published studies. Normal male and female results may 
range from less than a 1:1 ratio up to more than 1:2. 
Abnormality rates also range considerably: 40% up to 76% 
[50.6% (26); 61% (59); 61% (46); 76% (83); 40% (84); 
60% (85); 57% (18); 68% (41); 46% (86); 69.4% (12)]. 
Ascertainment bias, tissue culture failure and maternal 
contamination either in the sample or during tissue culture 
will all affect data sets. Percentages will be affected by the 
gestational age of the miscarriage samples. Losses in the 
first trimester exhibit chromosomal error in a reducing 
scale according to the week of developmental arrest. 
Preclinical losses between 2 to 6 weeks drop from 78% to 
70% chromosomal error (11); in comparison with 48% at  
7 weeks falling to 37.5% at twelve weeks (11).

Losses between 12 and 22 weeks constitute approximately 
4% of pregnancy outcomes, and less than 4% of these 
exhibit chromosomal errors (8). Ascending infection has 
been identified in 85% of recent demises in one study of 
second trimester losses (11). Fetal structural abnormalities 
constituted 7.6%, of which half were suspected or 
confirmed to be chromosomal abnormalities (11).

In these later losses monosomy X, and trisomy of 
chromosomes 13, 18 and 21 may be identified. Pooling these 
cases with first trimester losses will reduce the incidence of 
chromosomal error in a study population. Jenderny [2014] (57) 
included cases from 7 to 34 weeks gestation, and reported a 
61% abnormality rate. In comparison, studies where samples 
were all from first trimester loss (prior to 12 weeks gestation) 
reported an abnormality rate of 76% (83).

Of the specific types of abnormalities, monosomy X is 
the most frequent in first trimester spontaneous losses and 
has been reported in 8.6% of cases (2). It appears to be 
unaffected by maternal age, although one report suggested 
that it was inversely related (87). Only 1% of monosomy X 
conceptuses survive to term (11,88).

Autosomal trisomy is the largest group representing 
20% of the total population of first trimester spontaneous 
miscarr iages  successful ly  cultured and examined 
cytogenetically. Trisomy of chromosomes 19 and 1 are the 
most rare. Trisomy 19 has been given a risk figure of 0.01% 
by Simpson [1990] (2). There is little direct evidence of 
trisomy 19 in the literature. There are two reports of mosaic 
trisomy 19 in term births (89,90). There are only three 
reports of trisomy 1 in the literature at present. The first 
case was an 8 cell pre-embryo, which may not have survived 
in utero (91), while the second was observed in a SA lost at  
8-9 weeks post last menstrual period (LMP) (92). This 
particular case had no evidence of a fetal pole, although 

implantation and fetal sac formation were documented. The 
latest case of trisomy 1 was the result of an IVF pregnancy 
that initially implanted, but at 42 days post-fertilisation no 
evidence of a fetal heart-beat could be detected (93).

Chromosome 16 is the most common trisomy in SA, 
occurring in more than 7% of cases (2,5,11,26,31). This 
trisomy is not compatible with life and has not been 
documented in a full term birth. Trisomy 22 is the next 
most common (2,5,11,26,31). This is observed in rare 
cases at birth, but survival is very brief. Trisomy 21 is only 
slightly less common, followed by trisomy 15, trisomy 18, 
and trisomy 2 (2,5,11,26,31). Trisomy for either 15 or 2 is 
not observed at term, but both +18 and +13 can survive with 
severe birth defects (11).

The only autosomal monosomy observed is for 
chromosome 21, and this is a very rare event. A recent 
study reported seven cases in a single cohort, including 
one with mosaicism for a cell line containing monosomy 
for both X and 21 (94). One case has been presented in 
the literature where FISH was utilised to confirm the 
monosomy 21 (95) while a second case was investigated by 
molecular analysis (96). Fourteen cases of monosomy 21 
among 2040 abnormal results were reported in a large study 
where both cytogenetics and FISH were utilised, although 
FISH was only used in three cases (52).

Triploidy involves three full haploid sets of chromosomes 
(i.e., 3n), and occurs in nearly 8% of SA samples. The most 
common arrangements are 69,XXY (4.0% of the study 
population) followed by 69,XXX (2.7%) (2). Triploidy 
has been documented in 0.6% of stillborns and 0.002% 
of liveborns (97). According to Wang [1999] (98), more 
than 50 cases of apparently nonmosaic triploidy have 
been documented in the literature. One case of a child 
investigated at 8 and still alive at 13 has been reported (99). 
This child was a diploid/triploid mosaic with triploidy being 
of maternal origin.

Advanced maternal age

Across all the studies, advancing maternal age was linked 
to the increased incidence of single (2,60,100-102), 
double (31,85,100,101,103-106) and triple trisomy 
(85,104,107,108). Trisomic conceptuses account for as 
many as 30% of spontaneous losses for women of 40 or 
older (60,109). Maternal age appears to have little effect 
on the occurrence of polyploidy (triploidy and tetraploidy), 
and possibly a reverse effect on monosomy X (60,102,110). 
Structural errors may be sporadic or familial. Inherited 
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unbalanced structural alterations from phenotypically 
normal carrier parents will be independent of maternal age, 
with a constant unchanging risk for each conception.

Culture success rates and maternal 
contamination

The availability of fetal tissue in a sample is the first step 
towards obtaining an explanation of fetal demise. Historically, 
success rates of culture of material from abortuses have 
varied widely from a possible low of around 37% (2,517 
from 6,842 received) (100), to a high of 95.1% (609 from 
640) (111). Successful tissue culture, followed by harvesting 
to obtain metaphase spreads, G-banding and analysing all 
contribute to providing a meaningful result to patients, 
families and doctors. Overgrowth of maternal cells can affect 
the identification of a result, and has hampered elucidation 
of the true cause of first trimester miscarriage. Early studies 
apparently did not clearly differentiate maternal from fetal 
tissues and these studies report a marked bias towards normal 
female (87). An early method of estimation to eliminate bias 
was to take the number of normal female results equivalent 
to normal male results and then disregard the excess female 
data (112). A retrospective study of 34 cases with “normal 
female” results identified male material in five cases (113). 
Some studies used direct preparations of chorionic villus to 
analyse dividing cells, obtained from the freshly collected 
tissue. These studies reported much higher abnormality rates, 
and relied on the premise that the maternal decidua would 
not contain spontaneously dividing cells, while the fetal villi 
would (12,114,115).

Identification of fetal material in a sample collected 
for cytogenetic studies has been problematic for many 
organisations. Samples collected during dilation and 
curettage (D and C) consist of everything in the uterus. 
The actual evacuation procedure may provide the fetal 
tissue intact, in which case identification is straightforward. 
On other occasions, fetal tissue may disintegrate, making 
dissection of fetal membranes and villi more complex 
and time-consuming. On some occasions, the conception 
may have been expelled prior to the patient presenting 
for examination. Any tissue collected will only represent 
maternal decidua. 

Molecular tools

Conventional cytogenetics is hampered by maternal cell 
contamination, tissue culture failure and occasionally, 

very poor chromosome morphology. The lower limit of 
observation at the light microscope is 3-5 Mb. Each of these 
limitations results in an inability to correctly identify the 
fetal karyotype. 

Molecular techniques have provided different tools 
to study SA. Cytogenetic studies are whole genome 
investigations. Molecular tools may be site-specific (FISH, 
MLPA, QF-PCR) or whole genome (CGH, array-CGH, 
next generation sequencing). Earlier molecular methods also 
required metaphase spreads (CGH), whereas the newer ones 
only require good quality DNA; thus dispensing with the 
need for tissue culture. When cytogenetic studies have been 
successful, the newer techniques may be of limited additional 
clinical use, as they only identify a very small number of 
submicroscopic changes of questionable significance (1,116). 
However, when tissue culture fails, molecular techniques 
are very useful, although it is important to understand the 
limitations of each tool (52,117).

With the advent of molecular technology, it has become 
possible to reliably differentiate fetal tissue from maternal 
(52,59). Lathi and team (59) applied a SNP microarray to 
delineate fetal tissue. In addition it was considered to be 
reliable enough to detect 25% fetal tissue in a predominantly 
maternal sample. The technology is limited by an inability to 
detect balanced cytogenetic alterations or tetraploidy where 
the two parental contributions are equal. The multi-centre 
study reported 22% of 1,222 cases were affected by maternal 
cell contamination. Removing these from the data set raised 
the abnormality rate from 48% to 62%.

Fluorescent in situ hybridisation (FISH), MLPA 
and QF-PCR

Site-specific tools such as FISH are most applicable 
where culture was unsuccessful. It is useful to confirm 
a cytogenetic result when chromosomal morphology is 
poor. Probe sets must be designed to cover the majority of 
abnormalities detected in products of conceptions (POCs), 
otherwise only a limited number of alterations will be 
detected (1,53). FISH will detect polyploidy. It may also 
be useful in cases of aneuploidy or male conceptions when 
maternal cells have overgrown the fetal tissue.

MLPA is also a targeted approach to analysis, with probe 
sets designed to detect a specific subgroup of abnormalities. 
It cannot detect polyploidy. It has been used to detect 
alterations where tissue culture failed, although it too may 
be hampered by poor quality DNA (1,117).

QF-PCR uses polymorphic DNA sequences to 
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determine the presence of different alleles. These 
sequences are referred to as small  tandem repeat 
(STR) markers (microsatell ites).  It  was originally 
introduced for prenatal studies of ongoing pregnancies, 
utilising loci on chromosomes 13, 18, 21 and the sex 
chromosomes. The methodology was utilised with an 
expanded set of microsatellites to investigate POCs 
in 2005. Additional probes included STRs on 2, 7, 15 
and 16. In this study, there were discrepancies in 8 out 
of 89 cases examined by both traditional karyotyping 
and QF-PCR. This included five cases that were male 
by QF-PCR and female by cytogenetic analysis. The 
other three cases were normal female by QF-PCR and 
aneuploid by cytogenetic analysis (118).

Chromosomal and array CGH 

Chromosomal CGH requires metaphase spreads to 
compare the fetal (POC) with reference DNA from a 
chromosomally normal individual. It would be most useful 
in samples where chromosomal morphology is too poor, or 
in identifying marker chromosomes.

Array-CGH will identify sub-microscopic alterations, 
referred to as copy number variants (CNVs). There are now 
extensive databases listing benign CNVs. In the event of 
identifying a new CNV it is also relevant to test parents for 
inheritance. Six of seven studies using array-CGH in the 
review by van den Berg et al., [2012] (1), did not investigate 
the parents. As a result the CNVs would be classified as “of 
unknown significance”, which may not be useful to patients 
and clinicians.

As a clinical tool, array-CGH has limitations. It cannot 
detect balanced structural alterations, female triploidy or 
tetraploidy. Use of flow cytometry in addition to aCGH, 
should identify the additional 8-10% of samples with 
polyploidy as demonstrated by Menten et al. [2009] (51).

A combined approach to study of first trimester 
miscarriage samples is most likely to overcome limitations 
imposed by a single technique. Molecular approaches 
provide faster turn-around times and higher resolution, 
yet were not able to detect more abnormalities than 
conventional karyotyping. They come at a much higher 
cost-per-test (1,45), and identification of polyploidy or 
balanced chromosomal rearrangements cannot be achieved 
without additional tools (46,47,51,52,117). In cases of failed 
tissue culture, aCGH is likely to be of benefit unless the 
miscarriage is due to polyploidy (45). FISH would detect 
the polyploidy samples. Where only preserved tissue is 

available, the molecular tools can be utilised (119). This 
group was able to obtain results in 79% of cases. In this 
particular study reflex microsatellite analysis was used to 
detect maternal cell contamination in the 46,XX cases 
identified by aCGH (119). 

aCGH plus SNP has been successfully utilised to 
detect a pure molar pregnancy (47). The methodology was 
applied to detect loss/absence of heterozygosity. A pure 
mole is comprised of two copies of the paternal genome, 
and nullisomic for the maternal chromosomes. These 
pregnancies are important to correctly identify due to the 
clinical implications of persistent trophoblastic disease.

A recent review by van den Berg et al. [2012] (1) stated 
that across all the platforms conventional chromosomal 
abnormality never exceeded 50%. In understanding the 
current data and placing these in perspective with older 
publications, several issues require consideration. Since 
the application of molecular tools, there has been a 
change in data analysis. Traditionally using conventional 
cytogenetics, abnormality rates were ascertained according 
to the number of successfully karyotyped samples from 
tissue culture. In contrast, use of molecular tools in theory 
should not be limited by culture success, so every sample 
examined should be included. Therefore, current practice, 
when comparing conventional cytogenetics against any 
molecular method, every sample has been included. Success 
rates for conventional cytogenetics would then be lower 
than traditionally reported. In addition, many studies have 
included miscarriage samples up to 34 weeks gestation 
(55,57). As the abnormality rate after 12 weeks is very low, 
the data will be diluted. Therefore there is a risk that study 
of POCs may be dismissed as a robust clinical tool (1). As 
an example, the study by Diego-Alvarez et al. [2005] (118) 
included 160 samples. Gestational weeks ranged between 4 
and 24. Twelve samples were rejected for tissue culture, of 
which 94 were successfully karyotyped (63.5%), and 35% 
were abnormal. Molecular results were obtained for 151 
of 160 (94%). This compares with the study by Shearer 
et al. [2011] (52), where gestational age was unknown, 
tissue culture was successful in 80% of samples, and FISH 
was considered successful in 95% of samples. However 
in this second study, abnormality rates were 52% and 
25% respectively (52). The researchers then pooled these 
data sets to arrive at a final abnormality rate of 47% for 
successfully analysed samples (52). The study included fetal 
tissue, indicative of later gestation, thus consistent with a 
low abnormality rate of 17%. FISH is generally utilised 
with a restricted panel of probes. Chromosome 15 was not 
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included in their panel, yet it is one of the more common 
trisomies. When the abnormality rate is much lower than 
that for routine cytogenetics being run in parellel, the probe 
set has been inadequate to detect the abnormality.

A recent review of the literature (114) provided a 
comprehensive overview of the publications where both 
conventional cytogenetics and microarray were utilised 
on the same samples. These were analysed in depth to 
determine which methodology was the most appropriate 
platform to study miscarriages. Nine publications of the 
thirty-three that met the initial eligibility criteria were 
included in the final analysis; and the resultant pooled 
sample included 314 cases. Concordance of the two 
techniques was 86%. The data set was reduced to 233 
as four studies only tested the cytogenetically normal 
population with microarray. They were therefore excluded 
from further study. Of the final five publications, microarray 
identified 13% additional abnormalities not detected by 
conventional cytogenetics; whereas cytogenetics identified 
3% not detected by microarray (114).

However, examination of the final subset is interesting. 
One case was assigned to microarray because the 
cytogenetic result (93,XXYY,+22) was considered to be 
artefact. As the tetraploidy also exhibited a single extra copy 
of chromosome 22, it is more likely to represent the true 
karyotype of the conception. Additionally, if the tetraploid 
state had arisen in tissue culture, there should have been 
two additional copies of 22. A diploid cell line should also 
have been identified cytogenetically.

There were four cases exhibiting mosaicism of an 
abnormal chromosomal alteration with a normal female 
karyotype; two were detected by microarray and two by 
conventional cytogenetics. These are all most likely to 
represent maternal contamination.

Where results were discrepant, two cases were identified 
by conventional cytogenetics, and six were detected by 
microarray. Four cases with discrepancies of mosaicism 
identified by microarray and undetected by conventional 
cytogenetics included: mosaic trisomy 13 on array, but 
full trisomy 13 with cytogenetics; mosaic isochromosome 
7p on array, full isochromosome 7p with cytogenetics; 
trisomy 20 as well as trisomy 21with array, only trisomy 
21 with conventional cytogenetics; mosaicism for trisomy 
9 and 22 on array, only trisomy 22 with cytogenetics. The 
array results would not change counselling and clinical 
management for these patients.

The four remaining cases included two cases identified 
by conventional cytogenetics: a marker chromosome, and 

deletion of 5p14; and two cases identified by microarray: a 
deletion of 9p21and a duplication of 15q. These four cases 
would require further parental studies.

In conclusion this review of the literature demonstrated 
four cases that would require further parental investigation; 
one identified by conventional cytogenetics, one identified 
by both methods, and two by microarray. Of all the 
cases analysed, microarray would have only detected two 
additional cases over the conventional cytogenetic studies, 
representing only 0.86% improvement in diagnosis; but 
would have missed one case found by routine karyotyping 
(0.43%).

If microarray is introduced into a routine clinical setting, 
the detection rate of abnormalities may not be as robust as 
reported from a research study. Research studies focus on 
optimum samples to obtain results; rejecting suboptimal 
samples from the study population (115). Samples that 
would fail in tissue culture, may also fail by molecular 
methods due to the inability to obtain sufficient good 
quality DNA (51). Routine clinical samples are often very 
bloodstained, may only contain maternal decidua, and 
maternal invasion of a failed pregnancy may have occurred 
(giving a false normal female result). With the best efforts of 
technical staff, maternal contamination cannot be entirely 
eliminated (47,51,57,115). One study identified more than 
10% of their samples contaminated by maternal DNA. 
By reducing the detection threshold for aCGH, maternal 
cell contamination was minimised (46). The attention to 
detail and the focused interest of referring clinicians and 
laboratory personnel are often beyond the resources of 
many clinical laboratories. 

Finding a cause for failure of a pregnancy assists patients 
and their clinicians. Each country sets guidelines for testing 
samples, and these differ. Under the Australian Medicare 
programme, clinicians have the opportunity to refer 
samples for testing. The European Society of Obstetrics 
and Gynaecology recommends that samples are only tested 
within research studies. The Royal College of Obstetricians 
and Gynaecologists (RCOG) recommends testing; in 
contrast to the Dutch Society of Obstetrics and gynaecology 
(NVOC) which recommends no analysis (1).

Concluding remarks

Conventional cytogenetics has provided a very robust 
platform to understand first trimester miscarriage. It has 
demonstrated the strong contribution of chromosomal error 
to fetal loss. Molecular methods offer the opportunity to 
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overcome the shortfalls associated with samples that cannot 
be examined by tissue culture. As microarray and cytogenetics 
provide equivalent results on successful cases, a combined 
approach to study these samples may optimise identification 
of cause of pregnancy failure. Array would be the most likely 
tool when culture failure occurs; keeping in mind that at least 
two techniques would be required: for example array and 
FISH (53), or array and flow cytometry (51). Each laboratory 
may choose according to cost-benefit for their particular 
client and patient population.

Maternal cell contamination, a constant question 
for conventional cytogenetics, can also be identified. 
Molecular techniques that identify the parent have been 
instrumental in elucidating many of the mechanisms 
underlying consequent genetic error: maternal contribution 
to trisomy (either MMI or MMII); the presence of both 
parents in triploidy; two paternal genomes and no maternal 
contribution in pure moles; postzygotic mitotic errors in 
tetraploidy and rare cases of trisomies have all been clarified 
with molecular tools. Each step takes us closer to true 
understanding.
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